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Abstract

It has recently been proved[3] that the solution spaces of certain classes of differential equations
whose local solutions are parametrized by three or four arbitrary constants can be endowed with
conformal Lorentzian metrics in a natural way. We shall prove that these conformal structures are
preserved when the differential equations are transformed by a contact transformation.
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1. Introduction

It has recently been shown[3] that the solution spaces of certain classes of differential
equations whose local solutions are parametrized by arbitrary real constants are naturally
endowed with conformal Lorentzian structures.

In the three-dimensional case, this result is classical and can be viewed as a corollary of
Chern’s solution[2] of the local equivalence problem for third-order ODEs

d3u

ds3
= F

(
s, u,

du

ds
,

d2u

ds2

)
, (1)

under the Lie pseudogroup of contact transformations (see also[1]).
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In four-dimensional case, the starting point is given by an overdetermined system of
second-order partial differential equations of the form

∂2u

∂s2
= U

(
s, t, u,

∂u

∂s
,
∂u

∂t
,
∂2u

∂s∂t

)
,

∂2u

∂t2
= V

(
s, t, u,

∂u

∂s
,
∂u

∂t
,
∂2u

∂s∂t

)
, (2)

where the functionsU andV are chosen in such a way that the solutions depend smoothly
on four arbitrary constants.

A basic issue is to decide whether to use the pair of real variabless andt as our independent
variables or to combine them into a pair of conjugate complex coordinatess ands∗. While
the analysis can be carried out with either choice, it turns out that using the pair of real
variables is most natural when seeking a metric of split signature(1,1,−1,−1) on the
solution space, while the use of the complex conjugate pair is better adapted in the Lorentzian
case(1,−1,−1,−1). We will use the complex conjugate pair and stress that there is no
implication of holomorphicity in this choice. It will thus be convenient to re-formulate this
overdetermined system as a single complex partial differential equation of the form

∂2u

∂s2
= S

(
s, s∗, u,

∂u

∂s
,
∂u

∂s∗ ,
∂2u

∂s∂s∗

)
, (3)

wheres is a complex,s∗ denotes the complex conjugate ofs andS a complex-valued function
which is determined byU andV . It was shown in[3] that, locally, every four-dimensional
Lorentzian metric can be realized in a natural way as a metric on the solution space of
(3), and that further assumptions onS give rise to all the local solutions of the Einstein
equations.

Our goal in this paper is to further clarify the relationship between the contact geometry
of the differentialequations (3)and(1)and the conformal geometry of their solution spaces.
More precisely, we will show that the action induced by the Lie pseudogroup of contact
transformations will preserve the conformal classes of the underlying Lorentzian metrics.
Our proof is based on the equivalence between the classical envelope construction which is
used to solve the eikonal equation and Lie’s description of contact transformations in terms
of characteristic functions. It is thus different in spirit from the proof given in Chern’s paper
[2] in the three-dimensional case.

2. Contact geometry of a third-order ODE

To the third-order ODE

d3u

ds3
= F

(
s, u,

du

ds
,

d2u

ds2

)
, (4)

we associate the completely integrable Pfaffian systemIF onJ 2(R,R) � R4 generated by
the 1-forms

θ1 = du − u′ ds, θ2 = du′ − u′′ ds, θ3 = du′′ − F(s, u, u′, u′′)ds, (5)
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where(s, u, u′, u′′) denote local jet coordinates onJ 2(R,R) in which the contact Pfaffian
system is generated by the 1-formsθ1, θ2. The local solutions of(4) correspond to integral
curvesc : R→ J 2(R,R) satisfying the independence conditionc∗ ds �≡ 0.

We shall work locally by restricting the domain ofF(s, u, u′, u′′) to an open neighborhood
U of J 2(R,R) whereF is C∞ and where the Cauchy problem for(4) admits a unique
C∞ solution depending in aC∞ fashion on Cauchy data given inU . It follows from this
assumption that the setM3 of local solutions of(4) is endowed with the structure of a
three-dimensionalC∞ manifold. We will denote the local coordinates inM3 by (xa) =
(x1, x2, x3) and refer toM3 as thesolution spaceof (4). The ODE(4) thus gives rise to a
local fibrationρF : J 2(R,R) → M3, where

kerρF∗ = I⊥
F =

{
D

Ds

}
, (6)

and

D

Ds
= ∂

∂s
+ u′ ∂

∂u
+ u′′ ∂

∂u′ + F(s, u, u′, u′′)
∂

∂u′′ . (7)

By working locally inM3, we obtain aC∞ mapz : M3 × R → R, u = z(x1, x2, x3, s),
such that for fixedx0 in M3 with local coordinates(x1

0, x
2
0, x

3
0), the induced mapzx0 : R→

R, s → u = z(x1
0, x

2
0, x

3
0, s) is a solution of(4), that is

(j2zx0)
∗IF = 0. (8)

Consider now onM3 × R the three 1-forms given by

β1 = (∂az)dxa, β2 = (∂azs)dxa, β3 = (∂azss)dxa. (9)

It follows from the preceding discussion that there exists a local diffeomorphismς :
J 2(R,R) → M3×Rwhich fibers over the identity map id:R→ R through the source map
α : J 2(R,R) → R, α(s, u, u′, u′′) = s, and the projection pr:M3 × R → R,pr(x1, x2,

x3, s) = s,

and which pulls back the completely integrable Pfaffian systemJF = {β1, β2, β3} on
M3 × R to IF ,

ς∗JF = IF . (10)

We shall consider the ODEs(4) from the point of view of the Lie pseudogroup of contact
transformations ofJ 2(R,R). We will say that the ODE(4) and the third-order ODE

d3ū

ds̄3
= F̄

(
s̄, ū,

dū

ds̄
,

d2ū

ds̄2

)
(11)
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are locally equivalent if there exists a contact transformationf : J 2(R,R) → J 2(R,R),

(s, u, u′, u′′) → (s̄, ū, ū′, ū′′) such that

f ∗IF̄ = IF , (12)

that is a local diffeomorphismf : J 2(R,R) → J 2(R,R) such that

f ∗



θ̄1

θ̄2

θ̄3


 =



a11 0 0

a21 a22 0

a31 a32 a33





θ1

θ2

θ3


 , (13)

whereaij areC∞ functions onU satisfying
∏3

i=1 aii �≡ 0. Note that the matrix appearing
in the right-hand side of(13) is triangular as a direct consequence of Bäcklund’s theorem
on contact transformations,[5].

We shall restrict our attention to ODEs(4) satisfying the contact-invariant condition

WF := Fu − aFu′′ + Da

Ds
− ab = 0, (14)

wherea andb are defined by

2a = −Fu′ − 2

9
F 2
u′′ + 1

3

DFu′′

Ds
, b = −1

3
Fu′′ . (15)

The functionWF , known as theWünschmann invariant[2] of (4), is a relative invariant of
the contact geometry of(4), in the sense that if(4) and (11)are locally contact equivalent,
then

f ∗WF̄ = λWF (16)

for some non-vanishingC∞ multiplierλ. Alternatively, the Wünschmann invariantWF can
be viewed as a section of a certain natural line bundle naturally associated to(4).

3. The conformal Lorentzian structure on the solution space

Our purpose in this section is to exhibit a correspondence which associates to the contact
orbit of each ODE(4) satisfying the contact-invariant conditionWF = 0 a local conformal
Lorentzian structure on its solution spaceM. This correspondence is mentioned briefly by
Chern in[2] as a byproduct of his solution of the equivalence problem for(4) under the Lie
pseudogroup of contact transformations. The approach we have adopted here is a bit different
in the sense that it is based on the characterization of the conformal class of a Lorentzian
metric by its characteristic surfaces. Our main reason for treating the three-dimensional
case first is that it serves as guide for the four-dimensional case, which is treated in the next
section of our paper.

We start onJ 2(R,R) with the quadratic differential formh given by

hF = η1 ⊗ η3 + η3 ⊗ η1 − η2 ⊗ η2, (17)
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where

η1 = ς∗β1, η2 = ς∗β2, η3 = ς∗β3 + aς∗β1 + bς∗β2, (18)

whereς : J 2(R,R) → M3 × R was defined in(10)anda, b were given in(15).

Lemma 1. Consider a third-order ODE(4) with vanishing Wünschmann invariant,

WF = 0.

Then, we have[3]

LD/DshF = 2
3Fu′′hF .

We now letgF denote the quadratic differential form defined onM3 × R by

gF = (ς−1)∗hF . (19)

It follows from the preceding lemma thatgF induces onM3 a conformal Lorentzian struc-
ture, which we shall denote by [gF ]. We can thus write a representative for [gF ] in the
form

gF = ω1 ⊗ ω3 + ω3 ⊗ ω1 − ω2 ⊗ ω2, (20)

where

ω1 = β1, ω2 = β2, ω3 = β3 + [(ς−1)∗a]β1 + [(ς−1)∗b]β2. (21)

Before stating the main result of this section, we remark that any contact transformation
f : J 2(R,R) → J 2(R,R) relating(4)–(11)will map local solutions to local solutions
and will therefore induce a local diffeomorphism̃f : M3 → M̄3 between the solution
spaces of these ODEs. We shall choose adapted charts inM3 andM̄3 in which the local
diffeomorphismf̃ is represented by the identity.

Theorem 1. Let (4) be a third-order ODE with vanishing Wünschmann invariant and let
(11) be a third-order ODE locally equivalent to(4) under a contact transformationf :
J 2(R,R) → J 2(R,R). Then the local diffeomorphism of solution spacesf̃ : M3 → M̄3
induced byf preserves the corresponding conformal Lorentzian structures, that is

f̃ ∗[gF̄ ] = [gF ].

In particular, any three-parameter family of solutionsu = z(x1, x2, x3, s) of the ODE(4)
is a complete integral of the eikonal equation

gab
F ∂az ∂bz = 0 (22)

for [gF ], and, conversely, any complete integral of the eikonal equation(22)gives rise to a
solution of a third-order ODE which is contact equivalent to(4).

Proof. We shall give a proof in the case of contact transformations which are not the
prolongation of point transformations, and leave the case of prolonged point transformations
as an exercise to the reader.
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First recall[5] that a contact transformation which is not a prolonged point transformation
is determined in terms of a generating functionS(s, u, s̄, ū)by solving the following implicit
relations:

S(s, u, s̄, ū) = 0, Ss + u′Su = 0, Ss̄ + ū′Sū′ = 0 (23)

for s̄, ū, ū′ as functions ofs, u, u′, respectively. (We are of course assuming thatS satis-
fies the solvability conditions required by the implicit function theorem.) With no loss of
generality, we takeS to be of the form

S(s, u, s̄, ū) = ū − V̄ (s, u, s̄), (24)

and write the contact transformation generated byS in the form

ū = V̄ (s, u, I (s, u, u′)), s̄ = I (s, u, u′), ū′ = V̄s̄ (s, u, I (s, u, u
′)), (25)

whereI is determined by solving

V̄s + u′V̄u = 0 (26)

for s̄ in terms ofs, u, u′. The contact orbit of(1) is thus obtained by applying the transfor-
mation(25) to the 1-forms(5).

Next, note that, from(20), it follows that for each value ofs, the 1-formω1 is null for the
conformal class [gF ], so that any three-parameter family of solutionsu = z(x1, x2, x3, s)

of (4) gives rise to a one-parameter family of solutions of the eikonalequation (22). In other
words, the solutions of(4) are complete integrals of the eikonal equation.

We now want to invoke the envelope construction to take one complete integral of the
eikonal equation into another such solution. To this effect, we must first pull back(25) and
(26) toM3 × R by means of the local diffeomorphismς−1 : M3 × R→ J 2(R,R).

We now consider the function̄z(x1, x2, x3, s̄) defined by

z̄ = V̄ (s, z(x1, x2, x3, s), s̄), (27)

wheres is defined implicitly as a function ofx1, x2, x3 ands̄ by the envelope condition

V̄uu
′ + V̄s = 0. (28)

Note that although(28)has the same form as(26), it now lives onM3×R, and thus involves
the variablesx1, x2, x3, ands.

It is important to note that since the functionz(x1, x2, x3, s) solves the eikonalequation
(22), the functionz̄(x1, x2, x3, s̄) will also solve it. This proves the second part of the
statement of our theorem.

From(27) and (28), it follows that

z̄′ = dV̄

ds

ds

ds̄
. (29)

But we have

dV̄

ds
= ∂V̄

∂s
+ ∂V̄

∂u

du

ds
+ ∂V̄

∂s̄

ds̄

ds
(30)
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Now, the sum of the first two terms on the right-hand side of the above equation is zero by
virtue of (26), so that we have

z̄′ = ∂V̄

∂s̄

ds̄

ds
= ∂V̄

∂s̄
. (31)

This shows that the map̃f : M3 → M̄3 induced by a contact transformationf : J 2(R,R) →
J 2(R,R) will map the envelope of a 1-parameter family of null surfaces forgF to another,
and will therefore preserve the conformal class ofgF .

Stated more informally, what we have shown is that the contact equivalence class of a
third-order ODE satisfyingWF = 0 is characterized by the conformal equivalence class of a
three-dimensional Lorentzian metric. Furthermore, we have shown that the three-parameter
set of solutions of each ODE in a given class form a one-parameter family of solutions of
the eikonal equation for that Lorentzian metric. �
We conclude this section by illustrating the proof of our theorem in the simplest case of the
differential equation

d3u

ds3
= 0, (32)

which will give rise to three-dimensional conformal Minkowski space. We will thus re-
cover Lie’s classical correspondence between circle geometry in the Euclidean plane and
conformal Minkowskian geometry[4].

We will change the notation slightly and rewrite(32)as

d3û

dp3
= 0, (33)

whose general solution may be written as

û = (1 + p2)t + 2px+ (1 − p2)y, (34)

where the parameters(t, x, y) are constants of integration, which will serve as local coor-
dinates on the solution space. It is straightforward to check from the eikonalequation (22)
that the corresponding conformal structure on the solution space is Minkowskian,

g = Ω2 diag(1,−1,−1), (35)

and that for any fixed value ofp, the level surfaces of(34)are null planes for(35).
We now apply a suitable contact transformation the differentialequation (33)to map it

into the equation

d3ū

ds̄3
= 3

(dū/ds̄)(d2ū/ds̄2)2

1 + (dū/ds̄)2
, (36)

whose solutions, given implicitly by

(ū − y)2 + (s̄ − x)2 − t2 = 0, (37)

are the light cones with apex at(ū, s̄,0). This contact transformation can be conveniently
expressed as the composition of three relatively simple transformations. We first apply the
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fiber-preserving point transformation

u∗ = û

1 + p2
, coss = 2p

1 + p2
, (38)

to transform(33) into

d3u†

ds3
= −du†

ds
, (39)

with general solution given by

u† = t + x coss + y sins, (40)

where(t, x, y) are the same constants of integration as before. The level surfaces ofu† are
null planes. Next, we perform the fiber-preserving point transformation on(39)given by

u† = u sins (41)

to obtain

d3u

ds3
= −3

d2u

ds2
cots + 2

du

ds
, (42)

whose general solution is given by

u = x cots + y + t

sins
, (43)

with the level surfaces ofu being null planes. Finally, we apply to(42) the contact trans-
formation with generating functionH(s, u, s̄, ū) given by

H(s, u, s̄, ū) = (ū − u) sins + s̄ coss, (44)

which yields(36).
We now show that the ODE(36)and the light cones(37)can be constructed by forming

envelopes of planes(43). From(44), we have

ū = V̄ (s, u, s̄) = u − s̄ cots, (45)

or, in view of(43)

ū = x cots + y + t

sins
− s̄ cots. (46)

To apply the envelope construction, we set to zero the derivative of(46) with respect tos,
so that

coss = s̄ − x

t
. (47)

When(47) is substituted into(46), we obtain the family of light cones(37), and therefore
the ODE(36).
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4. Contact geometry of a pair of second-order PDEs

Our purpose in this section is to show how the main theorem of the preceding section can
be extended to the case of four-dimensional Lorentzian metrics. We will only give details
in the instances where there are notable differences with the three-dimensional case.

We first point out that it is not our intention at this stage to carry out a complete analysis
of the conformal geometry of the Lorentzian metric in terms of differential equations. We
will only concern ourselves with the relevant problem of establishing a correspondence
between conformal geometry of four-dimensional Lorentzian metrics and the contact ge-
ometry of certain differential equations. These differential equations will be overdetermined
systems of two second-order PDEs for one function of two variables, whose solutions de-
pend smoothly on four arbitrary constants. These constants will serve as local coordinates
on the four-dimensional solution space of our PDE system.

Recall from(3) that the differential equations which serve as the starting point of our
construction are overdetermined systems of PDEs of the form

∂2u

∂s2
= S

(
s, s∗, u,

∂u

∂s
,
∂u

∂s∗ ,
∂2u

∂s∂s∗

)
, (48)

wheres is complex-valued,s∗ denotes the complex conjugate ofs andS is complex-valued.
We will be interested in the case in which the Pfaffian system naturally associated to(48)is

completely integrable, so that the local solutions of(48)will depend on arbitrary constants.
We thus considerJ 2(R2,R) with local jet coordinates(s, s∗, u, us, us∗ , uss, uss∗ , us∗s∗) in
which the contact Pfaffian system is generated by the 1-forms

θu = du − us ds − us∗ ds∗, (49)

θus = dus − ussds − uss∗ ds∗, (50)

θus∗ = dus∗ − uss∗ ds − us∗s∗ ds∗. (51)

To (48) is naturally associated the locusLS in J 2(R2,R), defined by the equations

uss = S(s, s∗, u, us, us∗ , uss∗), us∗s∗ = S∗(s, s∗, u, us, us∗ , uss∗). (52)

We shall work locally and assume that this locus is a six-dimensionalC∞ submanifold of
J 2(R2,R), with local coordinates given by(s, s∗, u, us, us∗ , uss∗). Furthermore, we assume
that the signature condition

1 − Suss∗S
∗
uss∗ > 0, (53)

and the integrability condition

D2S∗

Ds2
= D2S

Ds∗2
, (54)

where

D

Ds
= ∂

∂s
+ us

∂

∂u
+ S

∂

∂us
+ uss∗

∂

∂us∗
+ Q

∂

∂uss∗
, (55)
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D

Ds∗ = ∂

∂s∗ + us∗
∂

∂u
+ uss∗

∂

∂us
+ S∗ ∂

∂us∗
+ Q∗ ∂

∂uss∗
, (56)

and whereQ is defined by

Q= usss∗ = (1 − Suss∗S
∗
uss∗ )

−1
[
∂S

∂s
+ us

∂S

∂u
+ S

∂S

∂us
+ uss∗

∂S

∂us∗

+ Suss∗

(
∂S∗

∂s∗ + us∗
∂S∗

∂u
+ uss∗

∂S∗

∂us
+ S∗ ∂S∗

∂us∗

)]
, (57)

are satisfied at every point ofLS . The signature condition(53) can be shown to ensure the
Lorentzian character of the signature of the metric on the solution space.

To (48), we associate onLS the rank 4 Pfaffian systemIS generated by the 1-forms

θ1 = du − us ds − us∗ ds∗, (58)

θ2 = dus − S(s, s∗, us, us∗ , uss∗)ds − uss∗ ds∗, (59)

θ3 = dus∗ − uss∗ ds − S∗(s, s∗, us, us∗ , uss∗)ds∗, (60)

θ4 = duss∗ − Q(s, s∗, us, us∗ , uss∗)ds − Q∗(s, s∗, us, us∗ , uss∗)ds∗. (61)

The local solutions of(48)are in one-to-one correspondence with the two-dimensional local
integral manifoldsc : R2 → LS of IS satisfying the independence condition

c∗(ds ∧ ds∗) �≡ 0 (62)

It is now easy to show using the Frobenius theorem that the local solutions of our overde-
termined system are parametrized by four arbitrary real constants.

Lemma 2. Consider an overdetermined system(48)satisfying the rank condition(53)and
the integrability condition(54).Then the corresponding Pfaffian systemIS = {θ1, θ2, θ3, θ4}
on the 6-manifoldLS is completely integrable.

It follows from this lemma that the setM4 of local solutions of the system(48), where
S satisfies(53), is a four-dimensionalC∞ manifoldM4. The local coordinates onM4 will
be denoted by(x1, x2, x3, x4), and we have now aC∞ map z : M4 × R2 → R, u =
z(x1, x2, x3, x4, s, s∗) such that for fixedx0 in M4 with local coordinates(x1

0, x
2
0, x

3
0, x

4
0),

the induced mapzx0 : R→ R, s → u = z(x1
0, x

2
0, x

3
0, x

4
0, s, s

∗) satisfies

(j2zx0)
∗IS = 0 (63)

for everyx0 ∈ M4.
We proceed in analogy with the three-dimensional case and consider onM4 × R2 the

1-forms given by

β0 = (∂az)dxa, β+ = (∂azs)dxa, β− = (∂azs∗)dxa,

β1 = (∂azss∗)dxa. (64)

We now have a local diffeomorphismς : LS → M4 ×R2 which pulls back the completely
integrable Pfaffian system generated byβ0, β+, β−, β1 to IS .
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In order to have a well-defined conformal Lorentzian structure onM4, we will have to
restrict our attention to a subclass of the class of overdetermined systems(48) for which a
certain invariant analogous to the Wünschmann invariant is identically zero. This invariant,
which we will denote byMS , is defined in[3] and is given by

MS = 1

3
(DsS) − Suss∗Sus − Sus∗ + Suss∗

g1+

g01
, (65)

where

g1+

g01
= − 1

2∆
((DsS)uss∗ − Sus − Sus∗S

∗
uss∗ )+

1

4∆
Suss∗ ((DsS

∗)uss∗ −S∗
us∗ − S∗

us
Suss∗ ),

(66)

and where

∆ = 1 − 1
4Suss∗S

∗
uss∗ . (67)

The condition

MS = 0 (68)

is invariant under contact transformations ofJ 2(R2,R) preservingLS .
We now consider the 1-forms

ω0 = ς∗β0, (69)

ω+ = α(ς∗β+ + bς∗β−), (70)

ω− = α(ς∗β− + b∗ς∗β+), (71)

ω1 = ς∗β1 + aς∗β+ + a∗ς∗β− + c ς∗β0, (72)

where the coefficientsα, a, b andc are defined in the following way,[3]

b =
√

1 − S∗
uss∗Suss∗ − 1

S∗
uss∗

, (73)

α2 =

(√
1 − S∗

uss∗Suss∗ + 1
)

2(1 − S∗
uss∗Suss∗ )

= (1 + bb∗)
(1 − bb∗)2

(74)

a = (1 − Suss∗S
∗
uss∗ )

−1

(
1 − 1

4

(
DS∗

Ds

)
uss∗

S∗
uss∗

)−1

×
{

1

2

[
S∗
us∗ + S∗

us
Suss∗ −

(
DS∗

Ds

)
uss∗

](
1 + 1

2
S∗
uss∗Suss∗

)

− 3

4
S∗
uss∗

[
Sus + Sus∗S

∗
uss∗ −

(
DS

Ds∗

)
uss∗

]}
(75)
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c = −1
2G − (a − a∗b∗)(a∗ − ab)(1 + bb∗)−1, (76)

and

G

(
1 + 1

2
Suss∗S

∗
uss∗

)

=
(

DS

Ds∗

)
us

+
(

DS

Ds∗

)
u∗
s

S∗
uss∗ +

[(
DS

Ds∗

)
u∗
s

]∗
+
[(

DS

Ds∗

)
us

]∗
Suss∗

− 1

2

(
D2S

Ds∗2

)
uss∗

+ 1

2
(S∗

us
Sus Suss∗ + Sus S

∗
u∗
s
+ S∗

u∗
s
Su∗

s
S∗
uss∗ + Su∗

s
S∗
us

− S∗
uss∗Su − Suss∗S

∗
u) − 1

2

(
Sus S

∗
uss∗ + Suss∗S

∗
us

+ 2

[(
DS

Ds∗

)
uss∗

]∗)
g1+

g01

− 1

2

(
Suss∗S

∗
u∗
s
+ Su∗

s
S∗
uss∗ + 2

(
DS

Ds∗

)
uss∗

)
g1−

g01
, (77)

whereg1−/g01 denotes the complex conjugate of the quantityg1+/g01 defined in(66).
Using these 1-forms, we define a quadratic differential formhS on the 6-manifoldLS by

hS = ω0 ⊗ ω1 + ω1 ⊗ ω0 − ω+ ⊗ ω− − ω− ⊗ ω+. (78)

We have

Lemma 3. Consider an overdetermined system(48), with vanishing generalized
Wünschmann invariant

MS = 0.

Then, we have[3]

LD/DshS = ΛhS

for some multiplierΛ.

We now letgS denote the quadratic differential form defined onM4 × R2 by

gS = (ς−1)∗hS. (79)

It follows from the preceding lemma thatgS induces onM4 a conformal Lorentzian structure,
which we shall denote by [gS ].

We can now state our main result in the four-dimensional case:

Theorem 2. Let (48) be an overdetermined PDE system with vanishing generalized
Wünschmann invariant, MS = 0, and consider a PDE system locally equivalent to(4) un-
der a contact transformationf : J 2(R2,R) → J 2(R2,R). Then the local diffeomorphism
of solution spacesf̃ : M4 → M̄4 induced byf preserves the corresponding conformal
Lorentzian structures, that is

f̃ ∗[ḡS̄ ] = [gS ].
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The proof is similar to the one given in the three-dimensional case. We remark that in the
four-dimensional case, a complete integral of the eikonal equation for [gS ] will depend on
two arbitrary real constants.
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